MATH 425A
 SOME COMMON FUNCTIONS

FALL 2019

In this document, I will define some common functions which often come up in math classes.

Power Function: The power function is a common function. It is defined as follows. Let $n \in \mathbb{N}$. For any $x \in \mathbb{R}$, we will write

$$
x^{n}=\underbrace{x \cdot x \cdots x}_{\mathrm{n} \text { times }}
$$

The above expression is called x to the $n^{\text {th }}$ power, or just x to the n. When convenient, we recognize this operation as a function $f: \mathbb{R} \rightarrow \mathbb{R}$ with

$$
f(x)=x^{n}
$$

A Special Case: It is also frequently convenient to define the following. For any $x \in \mathbb{R}$, we will write

$$
x^{0}=1
$$

In words, this is the statement that any number x raised to the $0^{\text {th }}$ power is 1 . In particular, this means that we have defined $0^{0}=1$.

The Absolute Value: The absolute value of any $x \in \mathbb{R}$ is written:

$$
|x|= \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{cases}
$$

One can check that $|x| \geq 0$ for all $x \in \mathbb{R}$. In fact, $|x|=0$ if and only if $x=0$. In words, $|x|$ measures the distance from x to 0 on the real line. Similarly, for any $x, y \in \mathbb{R},|x-y|$ measures the distance from x to y.

Factorials: For any $n \in \mathbb{N}$, the number n factorial, which we denote by n !, is defined by

$$
n!=n(n-1) \cdots(3)(2)(1)
$$

By convention, we set $0!=1$.
\mathbf{n} choose k: For any $n \in \mathbb{N}$ and each $0 \leq k \leq n$, we define n choose k, also called the binomial coefficient, by setting

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

